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Generating functions for higher-order interaction terms in the 
IBA Hamiltonian 

Joris Van der Jeugtt and Hans De Meyert 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 28 1-S9,99000 
Gent, Belgium 

Received 20 January 1987, in final form 15 April 1987 

Abstract. The generating function for the number of independent Hermitian SO(3) scalar 
operators in the enveloping algebra of U(6)  restricted to totally symmetric U(6) representa- 
tions is constructed. This predicts the number of interaction terms that may appear in the 
most general Hamiltonian for the interacting boson approximation ( I B A )  model. Then a 
complete analysis up to cubic interaction terms is given. 

1. Introduction 

In  the original interacting boson model ( I B M ) ,  initially introduced by Arima and 
Iachello (1976, 1978, 1979), a dynamical symmetry arises whenever the Hamiltonian 
H can be written in terms of invariants only of maximal subgroups G c U(6). In these 
papers, the Hamiltonian was an expression up to second order in the U(6) generators. 
The reason for this is that only one- and two-body interactions between the s and d 
bosons were maintained. Recently, there has been some interest in introducing higher- 
order interactions between the bosons. In the SU(3) chain, three-body interactions 
were introduced in the Hamiltonian by Vanden Berghe er a1 (1989,  and this gave rise 
to a much better approximation of the energy spectrum as well as to removal of the 
degeneracy which originally existed for members of the /3 and y bands. 

For one- and two-body interactions, it is well known (Iachello 1980) that the 
Hamiltonian can be written in terms of Casimir invariants of the subgroups U(5), 
SU(3), S0(6) ,  SO(5) and SO(3).  When analysing higher-order interaction terms, a 
number of questions arise. How many terms are contained in the most general 
higher-order Hamiltonian of a given degree for the interacting boson approximation 
( I B A )  model? How many of those terms survive when a phenomenological analysis 
of its eigenvalue spectrum is performed? Can all remaining terms be expressed as 
dynamical group or subgroup invariants, or should one introduce so-called mixed- 
symmetry operators? These problems are thoroughly probed in the present paper. 

In order to study the higher-order body interactions systematically, one has to 
answer the following group theoretical question: what is the structure of the centre of 
SO(3) in the enveloping algebra of U(6)? This problem can be tackled by means of 
the generating function ( G F )  technique. In fact, some partial results have been obtained 
already in a recent letter (Van der Jeugt 1986, hereafter referred to as I). In this letter, 
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the three symmetry chains of U(6) were studied separately, and for each chain an 
integrity basis of possible higher-order terms was given. In  fact, this implied the 
construction of the ‘degenerate’ G F  for the number of elements in the enveloping 
algebra of G (where G is one of SU(3), U(5) or SO(6)) that commute with the SO(3) 
basis elements. The notion of a ‘degenerate’ G F  was first introduced by Giroux et a1 
(1984). It is actually a G F  for certain objects acting on a class of degenerate representa- 
tions of a Lie algebra only. A class of degenerate representations is characterised by 
the fact that a fixed set of Dynkin labels are always zero. A simple example is for 
instance the class of symmetric irreps of U(6), for which the Lie algebra representations 
of As are labelled by ( N ,  0, 0, 0,O). 

It is the aim of the present paper to establish a G F  for the number of SO(3) scalars 
in the degenerate enveloping algebra (i.e. the enveloping algebra acting only on 
symmetric representations) of U(6). I t  is clear that the results obtained in I are also 
of use here, but do not yield a complete answer to the above problem. 

The outline of the paper is as follows: in § 2 the Lie algebra of the I B A  model is 
introduced, together with its subalgebras. In § 3 we construct the G F  for the number 
of Hermitian SO(3) scalar operators in the degenerate enveloping algebra of U(6).  In 
order to investigate which subalgebra invariants can be used in the I B A  Hamiltonian, 
the (degenerate) enveloping algebras of SU(3), U(5) and SO(6) are discussed in 0 4 
and special attention is paid to the cubic interaction terms in § 5. Finally, an analysis 
is given of the most general I B A  Hamiltonian up to third order in § 6. 

2. The algebra of U(6) 

I t  is well known that the generators of U(6) can be realised in terms of s and d boson 
creation and annihilation operators as follows: 

( j  = 0 , 1 , 2 , 3 , 4 )  [d’ x d I i J ’  
[ S +  x d p  [d’ x s’]‘2) [ S f  x f]‘? 

(2.1) 

Herein d :  ( p  = -2, - 1 , O ,  1 ,2) ,  d,, = (-l),,d-, ( p  = -2, - 1 , O ,  1 ,2) ,  S+ and s’= s are 
SO( 3)  spherical tensor operator components satisfying 

[ d , ,  d11= 6,“ [ s ,  s’] = 1 (2.2) 
and all other commutators are equal to zero. 

In this context the following operators are introduced (Iachello 1980): 

( j  = 1 , 2 , 3 , 4 )  T(” = [d’ x d ] ( l )  

Ad = A[ d + x d p  A, = [ S +  x F ] ‘ O ’  A = A d  + A,. 
Clearly, is the U(6) number operator counting the total number N = nd + n ,  of d 
and s bosons, whereas Gd (respectively Gy)  is the U(5) (respectively U(1))  number 
operator counting the number of d bosons nd (respectively of s bosons n y ) .  Furthermore 
the operators L, = m T F ’  ( p  = - 1 , O ,  1 )  generate the physical angular momentum 
subalgebra SO(3). The three maximal dynamical symmetry subalgebras U(5),  SU(3) 
and SO(6) are generated by the operator subsets {id, T‘”, T‘”, T‘3’,  F4’}, { T‘”, 0‘”) 
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and { T"', T'3',  P"'} respectively. SO(5) is generated by { T"',  T'3 ' }  and is obviously 
a subalgebra of U(5) and  SO(6).  Note that the generators of SU(5) (respectively 
SAU(6)) are obtained from those of U(5)  (respectively U(6)) by deleting Ad (respectively 

The standard I B A  Hamiltonian is built from Hermitian SO(3) scalars in the U(6) 
enveloping algebra which are of first or second degree in the U(6) generators. In the 
present paper higher-order elements in the enveloping algebra of U(6) are investigated 
which still commute with the SO(3) basis elements. Moreover, if we think of these 
terms as being possible candidates for extending the Hamiltonian, we should also keep 
in mind that these elements must be Hermitian. This is in fact a further restriction of 
the problem, as we shall see in the following section. 

N I .  

3. Degenerate generating functions for U(6) 

It is the aim of this section to construct a general formula for the number of independent 
Hermitian n-body interaction terms in the interacting boson model. There are two 
ways to proceed. On the one hand the techniques of I can be used by investigating 
the structure of the degenerate enveloping algebra of U(6). On the other hand the 
number of interaction terms is simply equal to the number of matrix elements between 
states of the same angular momentum I (because interaction terms must be SO(3) 
scalar operators). The two techniques give rise to similar calculations and the same 
results. Here, we shall follow only the second method, since it is much easier to 
understand. 

In order to illustrate the second technique, we first give an  example. The number 
of independent two-body interaction terms can be obtained by listing the available 
angular momenta coming from ( d  + s)', namely I = 0 , 2 , 4  from d', I = 2 from ds and 
1 = 0 from s 2 .  In total this gives 1 = 02, 2*, 4. Then the number of independent two-body 
terms (counting the four cells in the 2 x 2 matrix between I = 0 states, etc) is 4 + 4 +  1 = 9. 
Requiring Hermiticity implies the same counting but with Hermitian matrices. Hence 
the number of independent Hermitian two-body interaction terms is 3 + 3 + 1 = 7. 
Similarly, the available angular momenta coming from ( d  + s ) ~  are I = 0', 2', 3, 4', 6. 
Thus, the number of independent three-body interactions is 9 + 9  + 1 + 4 +  1 = 24, 
whereas the number of independent Hermitian three-body terms is 6 + 6 + 1 + 3 + 1 = 17. 

Now we intend to construct a general formula for the number of (Hermitian) 
n-body terms. From the above-mentioned examples it is clear that first one has to 
consider the angular momentum contents of the totally symmetric U(6) representation 
labelled by [ n ]  (i.e. the Lie algebra representation of A5 with Cartan labels (n,  0, 0, 0, 0)) .  
A generating function for the angular momentum states contained in [ n ]  is obtained 
from the branching rule G F  for SO(5) -* SO(3) (Gaskell et a1 1978) of the form 

The meaning of (3.1) is that when expanded in the form 
c c /  \ 

n -0 
(3.2) 

a,/ is equal to the number of states with angular momentum 1 in the representation [ n]. 
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Then it is clear that a G F  for the number of independent n-body interaction terms 
is given by 

whereas a G F  for the number of independent Hermitian n-body terms is 

We shall not explain the technical details of how (3.3) and (3.4) are 
derived from (3.1) but only give the final results: 

(3 .3)  

(3.4) 

explicitly 

1 + 3 U 3  + 6  U 3 + 9  U 4 + 6 U s  + 12 U6+ 6 U 7 + 9  U 8 + 6 U 9 +  3 U"+ U" 
G U ( 6 ) ( U )  = ( 1  - u)*(I - u2)3(1 - u3)2(1 - u4) (3.5)  

1 + U 2 + 3  U 3 + 4 U 4 + 3  U s + 6 U 6 + 3  U 7 + 5  U s + 3  U 9 + 2 U i o  
( 1  - u12(i - ~ * ) ~ ( 1 -  ~ " ~ ( 1 -  u4) HU(61(  U )  = 

The G F  (3.5) and (3.6) provide a general and direct answer to the number of independent 
(Hermitian) n-body interaction terms in the interacting boson model, for all n. The 
expansions of (3.5) and (3.6) start as follows: 

G u ( ~ ) ( U ) =  1+2U+9U2+24U'+64U4+140U5+.  . .  (3 .7)  

HU(6)( U )  = 1 + 2  U $ 7  U'+ 17 Li3+4i u4+ 85 u5+. . . (3.8) 

As a verification one sees that the numbers 9 and 7 for two-body terms (respectively 
24 and 17 for three-body terms) are the same as found previously in this section. 

Although the G F  (3.6) generates a formula for the number of independent Hermitian 
n-body terms ( n  is arbitrary), it does not tell us exactly which n-body terms are actually 
independent. For one- and two-body interaction terms in the I B A  Hamiltonian, this 
problem has been solved by Iachello (1980). The two independent one-body (or 
'linear') terms can be chosen as i, and id, or equivalently as 

rk i d } .  (3.9) 

A set of seven independent quadratic operators (i.e. two-body interaction terms) is 
given by 

is*, l irn*d, c 2 , S 0 ( S ) 9  C 2 , S 0 ( 3 ) r  c 2 , S U ( 3 1 ,  c2 .S0(61>  (3.10) 

where Ck,L is the kth order Casimir operator of L. Note that for symmetric represen- 
tations C,,uis, = id and C,,,, , ,  = r?: +4Gd. In a phenomenological analysis ]ir has the 
constant eigenvalue N. Hence we deduce the well known fact that the most general 
I B A  Hamiltonian up to two-body terms can be written complr:tely in terms of the 
Hermitian SO(3) scalar operators contained in one of the subg oups SU(3), U(5) or 
SO(6). It is the aim of this paper to study higher-order terms and io investigate whether 
they can still be written as a linear combination of higher-order operators in the 
enveloping algebra of one of the three maximal subgroups. For this purpose, we shall 
first summarise the results for the structure of the degenerate enveloping algebras of 
the three subgroups SU(3), U(5)  and SO(6). 
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4. Generating functions for SU(3), U(5) and SO(6) 

In  this section G,( U )  is the notation for the CF  for the number of independent SO(3) 
scalars in the (degenerate) enveloping algebra of the Lie algebra of L, and HL( U )  is 
used for the corresponding GF for Hermitian SO(3) scalars. 

The G F  for the number of SO(3) scalars in the enveloping algebra of SU(3) has 
been determined by Judd et a1 (1974) and is given by equation (1) of I. Including 
Casimir operators, it becomes 

Using a similar technique as in 03, one finds the CF  for the number of Hermitian 
SO(3) scalars: 

(4.2) 

The operators corresponding to the denominators in (4.2) are well known. The 
quadratic operators are Cz,so13, and C2.su,3,; one third-order operator is the cubic 
Casimir operator C3,su(3); the remaining cubic and quartic operators in  the integrity 
basis are Q and A, X I 3 )  and X'4' in the notation of Moshinsky er a1 (1975), and these 
were successfully introduced in the I B A  Hamiltonian by Vanden Berghe et a1 (1985). 

The C F  for SO(3) scalar operators in the degenerate enveloping algebra of U(5) 
follows from equation (10) of I: 

(4.3 

Using the same technique as in (3.1)-(3.4), we obtain 

1 +  u4+ u5+ u6+ U'O 
H ~ ( 5 ) ( U ) =  (1 - u)(1- ,y2)2(1- u3)2(1- u4) 

= 1+ u + 3 u 2 + 5 u 3 + .  . . . (4.4) 

Clearly, the first-order operator is G d ;  the three second-order opeartors are r?$, C2,socs, 
and Cz,so13). The five third-order operators will be discussed in 9 5. 

For symmetric irreps of S0(6),  only one Casimir operator is independent, namely 
c2 ,so(6) .  Hence, equation (7) of 1 implies that the G F  for the number of SO(3) scalars 
in the degenerate enveloping algebra of SO(6) is given by 

The corresponding G F  for the number of Hermitian SO(3) scalars is then 

(4.5) 

= 1 + 3 U 2 + 2 U 3 + .  . . . 
The three second-order operators are C2,so16), C2,so15, and C2,so(3); the third-order 
operators will be discussed in $5. 
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5. Cubic interaction terms respecting a dynamical symmetry 

The G F  obtained here predict the number of independent Hermitian SO(3) scalars of 
a certain degree in the (degenerate) enveloping algebra. Moreover, once the terms 
appearing in the numerator and the factors appearing in the denominator are identified, 
the G F  also tells us which SO(3) scalars of a certain degree are independent. For 
example, knowing the denominators in (4.2), the G F  implies that all higher-order terms 
are in fact products of the five operators C2,soi3), C2.SU(3)r C3,sui3), R and A. The 
identification of the operators appearing in the G F  is, however, a rather difficult problem, 
even if we restrict ourselves to operators up  to third order. Since computer programs 
are available (De Meyer et a1 1987) which transform operators in the enveloping 
algebra of a Lie algebra into a certain chosen standard form, we have chosen this 
algebraic computing approach in order to compare operators and to find out which 
of them are independent. In this case we are interested in relations between operators 
acting on totally symmetric representations. This restriction can be built in the operators 
by realising them in terms of the boson operators s(+) and a':). In other words, the 
degenerate enveloping algebra of U(6) is equal to the enveloping algebra of the Lie 
algebra spanned by {s, s+, d,, d : ,  1) with non-vanishing commutation relations given 
by ( 2 . 2 ) .  It is the latter Lie algebra we use as input for the symbolic calculation programs. 

Although the G F  from Q §  3 and 4 are completely general for all higher-order terms, 
we shall from now on restrict ourselves to the analysis of cubic terms. For the SU(3) 
subalgebra, spanned by 0"' and T"' ,  the following two cubic operators are 
independent: 

The first operator can be replaced by the cubic SU(3) invariant C,,su,3). The second 
operator is equivalent to R (Moshinsky er a1 1975); large parts of its eigenvalue 
spectrum have been obtained in algebraic closed form (De  Meyer er a /  1985, Vanden 
Berghe er a1 1985). 

The U(5) subalgebra is spanned by {&, T i " ; j  = 1,2 ,3 ,4}  and  { T"',  Ti,'} spans 
the SO(5) subalgebra. There are many ways to construct cubic SO(3) scalar operators 
by means of coupling three Ti ' )  tensors to a tensor of rank zero. However, when acting 
on symmetric representations of U(5) ,  only five cubic operators are independent, as 
shown by (4.4). By means of symbolic calculations i t  can be shown that the set of 
operators 

[ Ti I ! I 'l'"'n^d [ 7-13 7-1211!ol,d 

constitutes a basis of Hermitian cubic SO(3) scalars. Note that the first operator is 
equivalent to C3,ui5J, and that the second and third operators can be replaced by 
C,,so,3Jn^d and C,,so,,Jn*d. The last two operators A I  and A, cannot be reformulated 
in terms of U(5) ,  SO(5)  or SO(3) invariants, nor as products of such invariants; just 
like R for SU(3) they are Hermitian SO(3) scalar operators in the enveloping algebra 

The SO(6) subalgebra, generated by { T" ' ,  T'3 ' ,  Pi"} ,  also contains SO(5). In  
of U( 5). 

general, four Hermitian cubic SO(3) scalars can be constructed, namely 
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where HC stands for the Hermitian conjugate. When acting on arbitrary SO(6) rep- 
resentations, all four operators (5 .3)  are independent. However, (4.6) shows that only 
two operators are independent for symmetric representations (a, 0,O) of SO(6). Sym- 
bolic calculations show that the operators T2, r3 and r4 become proportional when 
acting upon symmetric irreps (a, 0,O). Hence, the two independent cubic interaction 
terms are r , ,  on the one hand, and any linear combination of Tz, r3 and r4, on the 
other hand. For simplicity we can take Tz; this operator has been studied in more 
detail and parts of its spectrum have been obtained already (Vanthournout et a f  1987). 
It should also be mentioned that the cubic part of the SO(6) invariant C3.S,(61 is in 
general a linear combination of the scalars T2 ,  r3 and r4 alone. Moreover, when acting 
upon symmetric irreps this combination reduces to zero which proves that C3,soi61 in 
that case becomes of lower degree. This is in agreement with the fact that its eigenvalues 
are only quadratic in the representation label. As a consequence, none of the two 
independent cubic SO(3) scalars, say r ,  and T 2 ,  can be reformulated in terms of 
invariants. 

6. Cubic U(6) interaction terms and phenomenological parameters 

From the G F  (3.6) or (3.8) it follows that there are seventeen independent Hermitian 
SO(3) scalars in the degenerate U(6) enveloping algebra. By analysing the three 
subalgebra chains we have already found nine cubic scalars which respect a certain 
dynamical symmetry, i.e. which belong to the enveloping algebra of one of the maximal 
subalgebras. However, as elements of the enveloping algebra of U(6), only eight of 
the nine operators (5.1), (5.2), r l  and T2 are independent. Indeed, it follows from 
(2.3) that 

(6.1) 

Hence Q = [[ T ' " x  T"']'" x Q'21]'o) in the SU(3) enveloping algebra is a linear combi- 
nation of T2 = [[ T'" x x Pc2'Ico'  and A ,  = [[ T"' x T'"]"' x T"']'o' occurring in 
the enveloping algebras of SO(6) and U(5) respectively. Hence, we have to drop one 
of the three operators SZ, T2 or A I ,  for instance the last one. 

Seven more indep5ndent cubic scalars follow by multiplying the seven independent 
quadratic scalars by N = C1,u(61. Finally, the two remaining independent scalars may 
be chosen as products of invariants belonging to different dynamical subalgebra chains, 
for example n*dC2.SU,31 and n*dC2,so16,. Of course, many other choices are possible, but 
it always turns out that at least two mixed-symmetry operators are necessary in order 
to find a set of seventeen independent cubic scalars. 

Q") = p(21-f fiT'21. 

The most general Hamiltonian of cubic interaction terms is then 

H'3 '= f i ( c l f i 2 + c 2 f i n * d  + c3n*:+c4c2,S0(51+ c ~ ~ 2 , S O ~ 3 1 + c 6 ~ Z , S U ( 3 J + ~ 7 C 2 , S O ( 6 ) )  

+ ~ B ~ 3 . S U l 3 ) ~ c C g n * ~ + ~ l O n * d ~ 2 . S 0 ~ 3 ) t ~ I I n * d ~ Z , S O ( 5 ) +  clZn^dC2,SU(31 

~ C 1 3 n * d C 2 . S 0 i 6 1 ~ C ~ 4 ~ ~ c ~ 5 A 2 ~ c l ~ r l ~ c l ~ r 2 ~  (6.2) 
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In a phenomenological analysis of I B A ,  fi has the constant eigenvalue N and this 
reduces the number of terms in the Hamiltonian considerably. For instance, 

J Van der Jeugt and H De Meyer 

H") = a ,  fi + a 2 i d  (6.3) 

contains two parameters, but only one phenomenological parameter ( a2) .  Similarly, 

H " ' =  hf i2+ b2fiTn*d + b ~ n * ~ + b 4 ~ 2 , ~ o ~ , ~ + b ~ ~ 2 , ~ o ~ ~ ~ + b 6 ~ ~ , ~ ~ ~ ( ~ ~ + b 7 ~ ~ , ~ o ~ 6 ~  (6.4) 

contai2s seven para?eters, but only five phenomenological parameters (b,, b4, . . . , b7) 
since N 2  = N' and Nn*, reduces to a lower-order operator. It follows from (6.2) that 
H'3'  contains only ten phenomenological parameters (c8, cg ,  . . . , cI7).  Eight of the ten 
remaining cubic terms respect one of the dynamical symmetries, whereas two terms 
clearly mix dynamical symmetries. Also, note that four of the ten terms cannot be 
written as group or subgroup invariants, nor as a product of such invariants. In this 
respect, the three-body interaction is completely different compared to the standard 
linear and two-body I B A  Hamiltonian. 
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